Jump to content
sonakias

Πως Λειτουργεί Το Turbo

Recommended Posts

Σε κάθε κύκλο λειτουργίας του ο κινητήρας ρουφάει αέρα μέσα από το φίλτρο αέρα, σωλήνες, τις βαλβίδες. Προκειμένου να αυξηθεί η ισχύς που μπορεί να παράγει ένας κινητήρας πρέπει να μπεί στον κύλινδρο και να καεί η μεγαλύτερη δυνατή ποσότητα εύφλεκτου μίγματος αέρα-καυσίμου. Ένας τρόπος είναι η χρήση υπερσυμπιεστή, συσκευής που αυξάνει την πίεση του αέρα στην είσοδο του κυλίνδρου. Ένα είδος είναι ο υπερσυμπιεστής εξάτμισης που χρησιμοποιεί τουρμπίνα πιο γνωστό ως turbo.

(επίσης μικρή υπερπίεση δημιουργείται και με την εκμετάλλευση του φαινομένου ram-air σε μεγάλες ταχύτητες. Πρόκειται για την έκθεση του στομίου εισαγωγής αέρα για τον κινητήρα απευθείας στην ροή του αέρα που συναντά ένα αυτοκίνητο κατά την κίνησή του! Αυτό το ρόλο παίζει η εισαγωγή του αέρα πάνω από το κεφάλι του οδηγού στη Formula 1 και σε κάτι hot-rods που έχουν την εισαγωγή αέρα έξω και πάνω από το καπώ. Κατασκευαστής κιτ ram-air για το Mazda MX5 ισχυρίζεται αύξηση ισχύος πάνω από 10%!)

Τurbo: πρόκειται για μια μηχανική αντλία δύο διαμερισμάτων, ένα για τα καυσαέρια που κινούν την φτερωτή και ένα άλλο διαμέρισμα για τον φρέσκο αέρα όπου μια άλλη φτερωτή συνδεδεμένη στον ίδιο άξονα με την προηγούμενη σπρώχνει και συμπιέζει τον αέρα προς τη μηχανή. ¶ρα έχει δύο εισόδους και δύο εξόδους. Διαμέρισμα 1: είσοδος των καυσαερίων από τη μηχανή και έξοδος τους προς την εξάτμιση. Διαμέρισμα 2: εισαγωγή φρέσκου αέρα από το φίλτρο αέρα και έξοδος προς το intercooler και την εισαγωγή της μηχανής.

Η συμπίεση του φρέσκου αέρα που κάνει η τουρμπίνα οδηγεί και σε αύξηση της θερμοκρασίας του πράμα που όμως δεν το θέλουμε γιατί τότε ελαττώνεται η ποσότητα αέρα που θα μπει στον κύλινδρο. Για την ελάττωση της θερμοκρασίας στη διαδρομή μεταξύ τουρμπίνας και εισαγωγής τοποθετούνται (συχνά) ψυγείο(α) για την ψύξη του αέρα, το intercooler. Αυτό μπορεί να είναι αέρα-αέρα ή μπορεί να χρησιμοποιεί το νερό του συστήματος ψύξης του κινητήρα οπότε είναι αέρα-νερού το οποίο μπορεί να είναι πιο πολύπλοκο αλλά έχει καλύτερη απόδοση. Οι συνδέσεις όλων αυτών γίνονται με σωληνώσεις οι οποίες πρέπει να σχετικά εύκαμπτες λόγω κραδασμών κλπ αλλά δεν πρέπει να διαστέλλονται γιατί τότε αυξάνεται ο όγκος άρα πέφτει η πίεση (συχνά χρησιμοποιούνται μεταλλικές σωληνώσεις με σιλικονένια τμήματα για τις συνδέσεις). Η ποσότητα του αέρα από την φτερωτή μέχρι και τις βαλβίδες εισαγωγής αποτελούν ένα νεκρό χώρο τον οποίο καλείται το turbo να γεμίσει με συμπιεσμένο αέρα. ¶ρα φρόνιμο είναι να γίνονται οι σχετικοί υπολογισμοί ώστε όταν πχ προσθέτουμε σωληνώσεις, βαλβίδες, μεγαλύτερο intercooler κλπ να μπορεί να λειτουργήσει το turbo και να μην "λαχανιάζει" γιατί τότε το αποτέλεσμα δεν θα είναι το ζητούμενο, ίσως να απαιτηθεί και αναβάθμιση του ενός τουλάχιστον διαμερίσματος του turbo.

Η τουρμπίνα που μπορεί να γυρίζει σε 100+ χιλιάδες στροφές το λεπτό για την αξιοπιστία της χρειάζεται λίπανση(λάδι) και ψύξη(λάδι ή νερό). Δολοφονικό θεωρείται το γκάζωμα του κινητήρα και σβήσιμο που αφήνει το turbo να γυρίζει γρήγορα χωρίς λάδι! Καλό είναι μετά από έντονη χρήση της τουρμπίνας να περνάει κάποιος χρόνος ώστε να μεταφερθεί η θερμότητα από το turbo. Διαφορετικά το λάδι που μένει στο turbo μπορεί να υπερθερμανθεί και να καεί και να αφήσει κατάλοιπα που ευνοούν τις τριβές και φθορές. Για το λόγο αυτό υπάρχουν και χρονοδιακόπτες που μπορούν να αφήνουν τη μηχανή να λειτουργεί για μερικά λεπτά ενώ ο οδηγός έχει ήδη βγεί και κλειδώσει το αυτοκίνητο!

Κάθε τουρμπίνα είναι κατασκευασμένη για ορισμένη ποσότητα αερίων και ορισμένες στροφές λειτουργίας. Για την επιπλέον προστασία της λοπόν χρησιμοποιούνται τα παρακάτω συστήματα ελέγχου.

Εγκέφαλος-αισθητήρια: χρησιμοποιώντας πολλά αισθητήρια (θερμοκρασίες σε διάφορα σημεία, εκτίμηση καύσης, θέση πεταλούδας γκαζιού, πιέσεις, πειράκια κλπ) ένας σύγχρονος εγκέφαλος μπορεί να ελέγχει πολλές παραμέτρους (καύσιμο, αβάνς, πεταλούδα κλπ) ώστε να διατηρεί το turbo στις προτεινόμενες συνθήκες λειτουργίας. Επιπλέον υπάρχουν:

Βαλβίδα (wastegate): αφήνει μέρος των καυσαερίων να πάνε προς την εξάτμιση παρακάμπτοντας τη φτερωτή περιορίζοντας έτσι τη μέγιστη πίεση συμπίεσης. Βρίσκεται πάνω στο turbo μεταξύ των δύο διαμερισμάτων, όταν η πίεση στο διαμέρισμα φρέσκου αέρα πλησιάζει την επιθυμητή τότε αρχίζει να ανοίγει. Είναι σταδιακή οπότε δεν καταλαβαίνουμε τίποτα. (αν υπάρχει intercooler η συμπίεση παίρνεται(=μετριέται) μετά το intercooler=κι άλλο ένα σωληνάκι) Πειράζοντας τους μοχλούς της βαλβίδας αυτής θεωρητικά μπορούμε εύκολα να αυξήσουμε τη συμπίεση (όχι στο smart) αλλά μπορεί να αυξάνουμε και τα πειράκια οπότε το σύστημα θα ελαττώσει το αβάνς οπότε δεν κερδίσαμε τίποτα!

Βαλβίδα (dump valve, blow off valve) κοινώς σκάστρα: όσο γίνεται πιο κοντά στην πεταλούδα εισαγωγής. Ανοίγει όταν η πεταλούδες του συστήματος εισαγωγής κλείνουν δηλαδή όταν αφήνουμε το γκάζι. Τότε η κινητική ενέργεια των αερίων που ωθούμενα από το turbo πηγαίνουν προς τους κυλίνδρους μπορεί να οδηγήσει σε αστοχία πεταλούδες κλπ και αύξηση της θερμοκρασίας. Επίσης αφού δεν μπορεί να πάει εμπρός αυξάνεται κατακόρυφα η πίεση μέχρι και 5 φορές πάνω από την συμπίεση και μπορεί να χαλάσουν οι σωληνώσεις και να φρενάρει η τουρμπίνα. Η βαλβίδα αυτή απελευθερώνει την παραπάνω ποσότητα αέρα επιτρέποντας έτσι στην φτερωτή να συνεχίσει να γυρίζει (ετοιμότητα όταν πατηθεί το γκάζι, λιγότερο turbo-lag) και προστατεύει και τα υπόλοιπα που αναφέρθηκαν. Λειτουργεί (δηλαδή ανοίγει) σε πίεση σαφώς μεγαλύτερης της πίεσης του turbo. Υπάρχουν διάφορα μεγέθη (ανάλογα με νεκρό χώρο, μέγεθος τουρμπίνας, πίεση κλπ) και τύποι.(με πιστόνι καλύτερα από ότι με διάφραγμα) Με δύο πιστόνια χρειάζεται όταν υπάρχει μετρητής αέρα (airflow meter) που αλλιώς μπερδεύεται και χαλάει το ρελαντί. Μπορεί ο αέρας που απορρίπτεται να ανακυκλώνεται (στέλνεται κάπου πριν το turbo) οπότε τότε πρόκειται για βαλβίδα ανακύκλωσης και δεν κάνει φασαρία!

Μπορούν να υπάρχουν και άλλες βαλβίδες.... πχ που να απελευθερώνει συμπιεσμένο φρέσκο αέρα όταν η πίεση φτάνει στη μέγιστη επιθυμητή κλπ.

Περί πιέσεων: οι turbo-φιλοι αναφέρονται σε πιέσεις λέγοντας για bar και psi. Η σχέση αυτών είναι: 1bar=14,5psi (1atm=14,7psi)

Μιλάμε πάντα για πιέσεις ΠΑΝΩ από την ατμοσφαιρική. Όταν λοιπόν πειράζουμε ένα turbo και από 0,7 πάει 1,4 bar δε θα βγάλει τη διπλή ισχύ γιατί δε διπλασιάσαμε την πίεση. Η πίεση, ατμοσφαιρική και turbo από 1+0,7=1,7 πήγε σε 1+1,4=2,4 άρα η μέγιστη θεωρητική (γιατί αυξάνονται και οι απώλειες) αύξηση ισχύος μπορεί να είναι 2,4/1,7=1,41 δηλαδή 41% και όχι 100% όπως ίσως ελπίζαν μερικοί!

Περί turbo-lag: ο χρόνος που απαιτείται ώστε να επιταχυνθεί η φτερωτή και να ανεβάσει πίεση. Όσο μεγαλύτερη είναι η φτερωτή τόσο πιο μεγάλη η αδράνειά της άρα θα αργήσει να ανεβάσει πίεση αλλά και τόσο μεγαλύτερη η απόδοσή της όταν ανεβάσει πίεση. Το αποτέλεσμα είναι μια καθυστέρηση από το πάτημα του γκαζιού μέχρι την απόκριση του κινητήρα και θεαματική και απότομη αύξηση της ισχύος όταν όπως λέγεται "μπει" το turbo. Μια (σχετικά) μικρή φτερωτή γυρίζοντας εύκολα ακόμα και με μικρή ποσότητα καυσαερίων μπορεί να ανεβάζει πιο σταδιακά την πίεση. Τα υβριδικά turbo είναι ειδικές κατασκευές που χρησιμοποιούν διαμερίσματα από δύο διαφορετικά μεγέθη turbo με στόχο να ελαττώσουν το turbo-lag αλλά να μη χάσουν μέγιστη πίεση. Εξαρτάται και από αρκετά άλλα πράματα αλλά οι περισσότερες σύγχρονες εργοστασιακές εφαρμογές το έχουν σχεδόν καταργήσει. Παλιότερα ήταν ένας παράγοντας που έπρεπε να λαμβάνεται σοβαρά υπόψη και να γίνεται προσαρμογή του τρόπου οδηγήματος ώστε να μην μπαίνει απότομα το turbo πάνω σε στροφή και να μην τρομάζει τον οδηγό σε κατέβασμα ταχύτητας για προσπέραση (τα Lancia Y-10 turbo φημίζονταν για το πόσο εύκολα καρφώνονταν στην νταλίκα εμπρός!) Ένα άλλο σημείο προσοχής είναι ότι ένας κινητήρας που έχει πλήρως τουρμπίσει δεν επιβραδύνει όσο εύκολα όσο ένας ατμοσφαιρικός όταν αφήσουμε το γκάζι αλλά μπορεί να συνεχίσει να επιταχύνει. (και αυτό το φαινόμενο τείνει να εκλείψει)

Μπαρόμετρο: συνδέεται μετά τις πεταλούδες και "βλέπει" την πίεση που επικρατεί εκεί πέρα! Είναι ρυθμισμένο να δείχνει πίεση πάνω από την ατμοσφαιρική. Όταν το αυτοκίνητο κινείται χωρίς να πατάμε γκάζι καταγράφει (αν μπορεί) αρνητική πίεση (υποπίεση εισαγωγής) (αρνητική σε σχέση με την ατμοσφαιρική, ο κινητήρας ρουφάει). Μόνα αν πατάμε πλήρως το γκάζι οπότε και οι πεταλούδες είναι ανοιχτές μετράει και δείχνει την πίεση που φτιάχνει το turbo.

Turbo και ροπή

Αν παρατηρήσετε σε πίνακες με τεχνικά χαρακτηριστικά θα δείτε ότι οι κινητήρες turbo που αποδίδουν μια ισχύ διαθέτουν σημαντικά μεγαλύτερη μέγιστη ροπή σε χαμηλότερες στροφές από έναν ατμοσφαιρικό κινητήρα που αποδίδει την ίδια μέγιστη ισχύ αν και πολύ μεγαλύτερου κυβισμού. Αυτό οφείλεται σε μεγάλο μέρος στην παραπάνω συμπίεση που επιτυγχάνεται δυναμικά στους κινητήρες turbo και γενικότερα στη ρύθμιση της λειτουργίας της τουρμπίνας και είναι ένα από τα πλεονεκτήματά τους και βέβαια είναι πολύ καλό!

Turbo και κατανάλωση

Οι κινητήρες turbo μπορούν να καίνε ανάλογα με τα κυβικά τους μόνο εφόσον το turbo υπολειτουργεί (γυρίζει πολύ αργά. Τότε λόγω χαμηλής στατικής συμπίεσης η αποδιδόμενη ισχύς είναι χαμηλότερη από ατμοσφαιρικού κινητήρα αντίστοιχων κυβικών). Οι καταναλώσεις που δίνουν οι κατασκευαστές δεν περιλαμβάνουν την έννοια του τουρμπίσματος και της έντονης επιτάχυνσης για αυτό και μοιάζουν να είναι ανάλογες του κυβισμού. Η ρεαλιστική κατανάλωση όμως όταν κάποιος εκμεταλλεύεται την ισχύ που μπορεί να του προσφέρει ο κινητήρας αυξάνεται και αντιστοιχεί στην παραγόμενη ισχύ! Το πόσα άλογα μπορείς να βγάλεις από μια συγκεκριμένη ποσότητα καυσίμου είναι μετρημένα και δεν μπορείς να βγάλεις παραπάνω (αρχή διατήρησης ενέργειας)! Μπορείς βέβαια να ελαττώσεις τις απώλειες. Όμως οι κινητήρες turbo έχουν και περισσότερες απώλειες από έναν καλοσχεδιασμένο ατμοσφαιρικό (απώλειες λόγω τριβής σε φτερωτή και τριβής αέρα σε σωληνώσεις, απώλειες λόγω θερμότητας γενικότερα, απώλειες λόγω αδυναμίας καλής σχεδίασης εξάτμισης και λόγω φρεναρίσματος των καυσαερίων από την ίδια την ύπαρξη της τουρμπίνας κλπ). ¶ρα για να βγάλεις τα παραπάνω άλογα καις και παραπάνω καύσιμο, δεν γίνεται αλλιώς. Πόσο παραπάνω?....ανάλογα με το βάρος του δεξιού ποδιού!

sillyhorse1rb5.gifnew_sugkrotima.gif:pardon:rocket.gif:)worthy.gif:yahoo::rofl::good:

  • Like 1
Link to comment
Share on other sites

Φιλε μου συγχαρητηρια για την πληρη αναλυση!! Εχω ομως μια απορια, αν μπορεις εσυ η καποιος αλλος φιλος που γνωριζει...

Γράφεις οτι η τουρμπινα μπορει να ψυχεται ειτε με λαδι ειτε με νερο. Γνωριζουμε σε ποια κατηγορια ανηκουν οι τουρμπινες των tsi 1,4 (122) και 1,8 (160) ??

Ευχαριστω

Link to comment
Share on other sites

Φιλε μου συγχαρητηρια για την πληρη αναλυση!! Εχω ομως μια απορια, αν μπορεις εσυ η καποιος αλλος φιλος που γνωριζει...

Γράφεις οτι η τουρμπινα μπορει να ψυχεται ειτε με λαδι ειτε με νερο. Γνωριζουμε σε ποια κατηγορια ανηκουν οι τουρμπινες των tsi 1,4 (122) και 1,8 (160) ??

Ευχαριστω

Νερό και αέρα αντίστοιχα όπως τα γράφεις!!! ;)

Link to comment
Share on other sites

Νερό και αέρα αντίστοιχα όπως τα γράφεις!!! ;)

Μάκη, ο συνονόματός σου makisg4, ρωτάει για την τουρμπίνα αυτή καθεαυτή, όχι για το συμπιεσμένο αέρα.

Η τουρμπίνα στο 1,8 (160) ψύχεται και με νερό και με λάδι, το οποίο ούτως ή άλλως είναι απαραίτητο για τη λίπανση κάθε τουρμπίνας.

Η τουρμπίνα του 1,4 (122) παίρνει σίγουρα παροχή λαδιού. Για νερό δεν ξέρω αλλά πιθανότατα θα είναι και υγρόψυκτη.

Link to comment
Share on other sites

Δλδ αν καταλαβα καλα εχουμε λαδι για την λιπανση του αξονα και νερο για την ψυξη του κελυφους??

Ναι και ταυτόχρονα με τη λίπανση, το λάδι επιτελεί και ψυκτικό έργο.

Link to comment
Share on other sites

Ξερουμε αν τα 160άρια TSi έχουν ψυγείο λαδιού?

Έχουν, αλλα είναι υγρόψυκτό και ψύχεται από το ψυκτικό υγρό του κινητήρα.

Δεν είναι το κλασικό αερόψυκτο που μπαίνει μπροστά μαζί με τα υπόλοιπα ψυγεία.

Edited by stef80
Link to comment
Share on other sites

Καλό είναι γιατί ζεσταίνει το λαδι γρηγορότερα κατα την εκκίνηση,(το ψυκτικό υγρό θερμαίνεται πιο γρήγορα, οπότε στα πρώτα λεπτά λειτουργίας μεταφέρει θερμότητα στο λάδι) και κατα την κανονική λειτουργία διατηρεί μια σχετικά σταθερη θερμοκρασία στο λάδι ανεξαρτητως καλοκαιριου, χειμωνα κτλ.

Edited by stef80
Link to comment
Share on other sites

Και μια ερωτησουλα ...

Στο 122ρι η θερμοκρασια λαδιων που βλεπω μπορει να σχετιστη με την θερμοκρασια λαδιων της τουμπινας?

Link to comment
Share on other sites

Και μια ερωτησουλα ...

Στο 122ρι η θερμοκρασια λαδιων που βλεπω μπορει να σχετιστη με την θερμοκρασια λαδιων της τουμπινας?

Το ίδιο λάδι που χρησιμοποιεί ο κινητήρας, περνάει και από την τουρμπίνα. Βέβαια, αφού περάσει και λιπάνει τον άξονα και τα κουζινέτα της τουρμπίνας, ανεβαίνει η θερμοκρασία του αλλά αμέσως μετά πέφτει στο κάρτερ και ανακατεύεται με το υπόλοιπο λάδι που έχει τη θερμοκρασία που βλέπεις.

Δεν υπάρχει καποια αντιστοιχία, ότι δηλαδή για τάδε θερμοκρασία λαδιού στο κάρτερ, έχουμε αυτή τη θερμοκρασία στον άξονα της τουρμπίνας. Εξαρτάται από τα τελευταία λεπτά οδήγησης. Αν πηγαίνεις χαλαρά, οι θερμοκρασίες δεν θα απέχουν πάρα πολύ. Αν το έχεις πιέσει, η τουρμπίνα θα έχει πολύ υψηλή θερμοκρασία και θα ανεβάζει πολύ τη θερμοκρασία του λαδιού που περνάει.

Link to comment
Share on other sites

Σε κάθε κύκλο λειτουργίας του ο κινητήρας ρουφάει αέρα μέσα από το φίλτρο αέρα, σωλήνες, τις βαλβίδες. Προκειμένου να αυξηθεί η ισχύς που μπορεί να παράγει ένας κινητήρας πρέπει να μπεί στον κύλινδρο και να καεί η μεγαλύτερη δυνατή ποσότητα εύφλεκτου μίγματος αέρα-καυσίμου. Ένας τρόπος είναι η χρήση υπερσυμπιεστή, συσκευής που αυξάνει την πίεση του αέρα στην είσοδο του κυλίνδρου. Ένα είδος είναι ο υπερσυμπιεστής εξάτμισης που χρησιμοποιεί τουρμπίνα πιο γνωστό ως turbo.

(επίσης μικρή υπερπίεση δημιουργείται και με την εκμετάλλευση του φαινομένου ram-air σε μεγάλες ταχύτητες. Πρόκειται για την έκθεση του στομίου εισαγωγής αέρα για τον κινητήρα απευθείας στην ροή του αέρα που συναντά ένα αυτοκίνητο κατά την κίνησή του! Αυτό το ρόλο παίζει η εισαγωγή του αέρα πάνω από το κεφάλι του οδηγού στη Formula 1 και σε κάτι hot-rods που έχουν την εισαγωγή αέρα έξω και πάνω από το καπώ. Κατασκευαστής κιτ ram-air για το Mazda MX5 ισχυρίζεται αύξηση ισχύος πάνω από 10%!)

Τurbo: πρόκειται για μια μηχανική αντλία δύο διαμερισμάτων, ένα για τα καυσαέρια που κινούν την φτερωτή και ένα άλλο διαμέρισμα για τον φρέσκο αέρα όπου μια άλλη φτερωτή συνδεδεμένη στον ίδιο άξονα με την προηγούμενη σπρώχνει και συμπιέζει τον αέρα προς τη μηχανή. ¶ρα έχει δύο εισόδους και δύο εξόδους. Διαμέρισμα 1: είσοδος των καυσαερίων από τη μηχανή και έξοδος τους προς την εξάτμιση. Διαμέρισμα 2: εισαγωγή φρέσκου αέρα από το φίλτρο αέρα και έξοδος προς το intercooler και την εισαγωγή της μηχανής.

Η συμπίεση του φρέσκου αέρα που κάνει η τουρμπίνα οδηγεί και σε αύξηση της θερμοκρασίας του πράμα που όμως δεν το θέλουμε γιατί τότε ελαττώνεται η ποσότητα αέρα που θα μπει στον κύλινδρο. Για την ελάττωση της θερμοκρασίας στη διαδρομή μεταξύ τουρμπίνας και εισαγωγής τοποθετούνται (συχνά) ψυγείο(α) για την ψύξη του αέρα, το intercooler. Αυτό μπορεί να είναι αέρα-αέρα ή μπορεί να χρησιμοποιεί το νερό του συστήματος ψύξης του κινητήρα οπότε είναι αέρα-νερού το οποίο μπορεί να είναι πιο πολύπλοκο αλλά έχει καλύτερη απόδοση. Οι συνδέσεις όλων αυτών γίνονται με σωληνώσεις οι οποίες πρέπει να σχετικά εύκαμπτες λόγω κραδασμών κλπ αλλά δεν πρέπει να διαστέλλονται γιατί τότε αυξάνεται ο όγκος άρα πέφτει η πίεση (συχνά χρησιμοποιούνται μεταλλικές σωληνώσεις με σιλικονένια τμήματα για τις συνδέσεις). Η ποσότητα του αέρα από την φτερωτή μέχρι και τις βαλβίδες εισαγωγής αποτελούν ένα νεκρό χώρο τον οποίο καλείται το turbo να γεμίσει με συμπιεσμένο αέρα. ¶ρα φρόνιμο είναι να γίνονται οι σχετικοί υπολογισμοί ώστε όταν πχ προσθέτουμε σωληνώσεις, βαλβίδες, μεγαλύτερο intercooler κλπ να μπορεί να λειτουργήσει το turbo και να μην "λαχανιάζει" γιατί τότε το αποτέλεσμα δεν θα είναι το ζητούμενο, ίσως να απαιτηθεί και αναβάθμιση του ενός τουλάχιστον διαμερίσματος του turbo.

Η τουρμπίνα που μπορεί να γυρίζει σε 100+ χιλιάδες στροφές το λεπτό για την αξιοπιστία της χρειάζεται λίπανση(λάδι) και ψύξη(λάδι ή νερό). Δολοφονικό θεωρείται το γκάζωμα του κινητήρα και σβήσιμο που αφήνει το turbo να γυρίζει γρήγορα χωρίς λάδι! Καλό είναι μετά από έντονη χρήση της τουρμπίνας να περνάει κάποιος χρόνος ώστε να μεταφερθεί η θερμότητα από το turbo. Διαφορετικά το λάδι που μένει στο turbo μπορεί να υπερθερμανθεί και να καεί και να αφήσει κατάλοιπα που ευνοούν τις τριβές και φθορές. Για το λόγο αυτό υπάρχουν και χρονοδιακόπτες που μπορούν να αφήνουν τη μηχανή να λειτουργεί για μερικά λεπτά ενώ ο οδηγός έχει ήδη βγεί και κλειδώσει το αυτοκίνητο!

Κάθε τουρμπίνα είναι κατασκευασμένη για ορισμένη ποσότητα αερίων και ορισμένες στροφές λειτουργίας. Για την επιπλέον προστασία της λοπόν χρησιμοποιούνται τα παρακάτω συστήματα ελέγχου.

Εγκέφαλος-αισθητήρια: χρησιμοποιώντας πολλά αισθητήρια (θερμοκρασίες σε διάφορα σημεία, εκτίμηση καύσης, θέση πεταλούδας γκαζιού, πιέσεις, πειράκια κλπ) ένας σύγχρονος εγκέφαλος μπορεί να ελέγχει πολλές παραμέτρους (καύσιμο, αβάνς, πεταλούδα κλπ) ώστε να διατηρεί το turbo στις προτεινόμενες συνθήκες λειτουργίας. Επιπλέον υπάρχουν:

Βαλβίδα (wastegate): αφήνει μέρος των καυσαερίων να πάνε προς την εξάτμιση παρακάμπτοντας τη φτερωτή περιορίζοντας έτσι τη μέγιστη πίεση συμπίεσης. Βρίσκεται πάνω στο turbo μεταξύ των δύο διαμερισμάτων, όταν η πίεση στο διαμέρισμα φρέσκου αέρα πλησιάζει την επιθυμητή τότε αρχίζει να ανοίγει. Είναι σταδιακή οπότε δεν καταλαβαίνουμε τίποτα. (αν υπάρχει intercooler η συμπίεση παίρνεται(=μετριέται) μετά το intercooler=κι άλλο ένα σωληνάκι) Πειράζοντας τους μοχλούς της βαλβίδας αυτής θεωρητικά μπορούμε εύκολα να αυξήσουμε τη συμπίεση (όχι στο smart) αλλά μπορεί να αυξάνουμε και τα πειράκια οπότε το σύστημα θα ελαττώσει το αβάνς οπότε δεν κερδίσαμε τίποτα!

Βαλβίδα (dump valve, blow off valve) κοινώς σκάστρα: όσο γίνεται πιο κοντά στην πεταλούδα εισαγωγής. Ανοίγει όταν η πεταλούδες του συστήματος εισαγωγής κλείνουν δηλαδή όταν αφήνουμε το γκάζι. Τότε η κινητική ενέργεια των αερίων που ωθούμενα από το turbo πηγαίνουν προς τους κυλίνδρους μπορεί να οδηγήσει σε αστοχία πεταλούδες κλπ και αύξηση της θερμοκρασίας. Επίσης αφού δεν μπορεί να πάει εμπρός αυξάνεται κατακόρυφα η πίεση μέχρι και 5 φορές πάνω από την συμπίεση και μπορεί να χαλάσουν οι σωληνώσεις και να φρενάρει η τουρμπίνα. Η βαλβίδα αυτή απελευθερώνει την παραπάνω ποσότητα αέρα επιτρέποντας έτσι στην φτερωτή να συνεχίσει να γυρίζει (ετοιμότητα όταν πατηθεί το γκάζι, λιγότερο turbo-lag) και προστατεύει και τα υπόλοιπα που αναφέρθηκαν. Λειτουργεί (δηλαδή ανοίγει) σε πίεση σαφώς μεγαλύτερης της πίεσης του turbo. Υπάρχουν διάφορα μεγέθη (ανάλογα με νεκρό χώρο, μέγεθος τουρμπίνας, πίεση κλπ) και τύποι.(με πιστόνι καλύτερα από ότι με διάφραγμα) Με δύο πιστόνια χρειάζεται όταν υπάρχει μετρητής αέρα (airflow meter) που αλλιώς μπερδεύεται και χαλάει το ρελαντί. Μπορεί ο αέρας που απορρίπτεται να ανακυκλώνεται (στέλνεται κάπου πριν το turbo) οπότε τότε πρόκειται για βαλβίδα ανακύκλωσης και δεν κάνει φασαρία!

Μπορούν να υπάρχουν και άλλες βαλβίδες.... πχ που να απελευθερώνει συμπιεσμένο φρέσκο αέρα όταν η πίεση φτάνει στη μέγιστη επιθυμητή κλπ.

Περί πιέσεων: οι turbo-φιλοι αναφέρονται σε πιέσεις λέγοντας για bar και psi. Η σχέση αυτών είναι: 1bar=14,5psi (1atm=14,7psi)

Μιλάμε πάντα για πιέσεις ΠΑΝΩ από την ατμοσφαιρική. Όταν λοιπόν πειράζουμε ένα turbo και από 0,7 πάει 1,4 bar δε θα βγάλει τη διπλή ισχύ γιατί δε διπλασιάσαμε την πίεση. Η πίεση, ατμοσφαιρική και turbo από 1+0,7=1,7 πήγε σε 1+1,4=2,4 άρα η μέγιστη θεωρητική (γιατί αυξάνονται και οι απώλειες) αύξηση ισχύος μπορεί να είναι 2,4/1,7=1,41 δηλαδή 41% και όχι 100% όπως ίσως ελπίζαν μερικοί!

Περί turbo-lag: ο χρόνος που απαιτείται ώστε να επιταχυνθεί η φτερωτή και να ανεβάσει πίεση. Όσο μεγαλύτερη είναι η φτερωτή τόσο πιο μεγάλη η αδράνειά της άρα θα αργήσει να ανεβάσει πίεση αλλά και τόσο μεγαλύτερη η απόδοσή της όταν ανεβάσει πίεση. Το αποτέλεσμα είναι μια καθυστέρηση από το πάτημα του γκαζιού μέχρι την απόκριση του κινητήρα και θεαματική και απότομη αύξηση της ισχύος όταν όπως λέγεται "μπει" το turbo. Μια (σχετικά) μικρή φτερωτή γυρίζοντας εύκολα ακόμα και με μικρή ποσότητα καυσαερίων μπορεί να ανεβάζει πιο σταδιακά την πίεση. Τα υβριδικά turbo είναι ειδικές κατασκευές που χρησιμοποιούν διαμερίσματα από δύο διαφορετικά μεγέθη turbo με στόχο να ελαττώσουν το turbo-lag αλλά να μη χάσουν μέγιστη πίεση. Εξαρτάται και από αρκετά άλλα πράματα αλλά οι περισσότερες σύγχρονες εργοστασιακές εφαρμογές το έχουν σχεδόν καταργήσει. Παλιότερα ήταν ένας παράγοντας που έπρεπε να λαμβάνεται σοβαρά υπόψη και να γίνεται προσαρμογή του τρόπου οδηγήματος ώστε να μην μπαίνει απότομα το turbo πάνω σε στροφή και να μην τρομάζει τον οδηγό σε κατέβασμα ταχύτητας για προσπέραση (τα Lancia Y-10 turbo φημίζονταν για το πόσο εύκολα καρφώνονταν στην νταλίκα εμπρός!) Ένα άλλο σημείο προσοχής είναι ότι ένας κινητήρας που έχει πλήρως τουρμπίσει δεν επιβραδύνει όσο εύκολα όσο ένας ατμοσφαιρικός όταν αφήσουμε το γκάζι αλλά μπορεί να συνεχίσει να επιταχύνει. (και αυτό το φαινόμενο τείνει να εκλείψει)

Μπαρόμετρο: συνδέεται μετά τις πεταλούδες και "βλέπει" την πίεση που επικρατεί εκεί πέρα! Είναι ρυθμισμένο να δείχνει πίεση πάνω από την ατμοσφαιρική. Όταν το αυτοκίνητο κινείται χωρίς να πατάμε γκάζι καταγράφει (αν μπορεί) αρνητική πίεση (υποπίεση εισαγωγής) (αρνητική σε σχέση με την ατμοσφαιρική, ο κινητήρας ρουφάει). Μόνα αν πατάμε πλήρως το γκάζι οπότε και οι πεταλούδες είναι ανοιχτές μετράει και δείχνει την πίεση που φτιάχνει το turbo.

Turbo και ροπή

Αν παρατηρήσετε σε πίνακες με τεχνικά χαρακτηριστικά θα δείτε ότι οι κινητήρες turbo που αποδίδουν μια ισχύ διαθέτουν σημαντικά μεγαλύτερη μέγιστη ροπή σε χαμηλότερες στροφές από έναν ατμοσφαιρικό κινητήρα που αποδίδει την ίδια μέγιστη ισχύ αν και πολύ μεγαλύτερου κυβισμού. Αυτό οφείλεται σε μεγάλο μέρος στην παραπάνω συμπίεση που επιτυγχάνεται δυναμικά στους κινητήρες turbo και γενικότερα στη ρύθμιση της λειτουργίας της τουρμπίνας και είναι ένα από τα πλεονεκτήματά τους και βέβαια είναι πολύ καλό!

Turbo και κατανάλωση

Οι κινητήρες turbo μπορούν να καίνε ανάλογα με τα κυβικά τους μόνο εφόσον το turbo υπολειτουργεί (γυρίζει πολύ αργά. Τότε λόγω χαμηλής στατικής συμπίεσης η αποδιδόμενη ισχύς είναι χαμηλότερη από ατμοσφαιρικού κινητήρα αντίστοιχων κυβικών). Οι καταναλώσεις που δίνουν οι κατασκευαστές δεν περιλαμβάνουν την έννοια του τουρμπίσματος και της έντονης επιτάχυνσης για αυτό και μοιάζουν να είναι ανάλογες του κυβισμού. Η ρεαλιστική κατανάλωση όμως όταν κάποιος εκμεταλλεύεται την ισχύ που μπορεί να του προσφέρει ο κινητήρας αυξάνεται και αντιστοιχεί στην παραγόμενη ισχύ! Το πόσα άλογα μπορείς να βγάλεις από μια συγκεκριμένη ποσότητα καυσίμου είναι μετρημένα και δεν μπορείς να βγάλεις παραπάνω (αρχή διατήρησης ενέργειας)! Μπορείς βέβαια να ελαττώσεις τις απώλειες. Όμως οι κινητήρες turbo έχουν και περισσότερες απώλειες από έναν καλοσχεδιασμένο ατμοσφαιρικό (απώλειες λόγω τριβής σε φτερωτή και τριβής αέρα σε σωληνώσεις, απώλειες λόγω θερμότητας γενικότερα, απώλειες λόγω αδυναμίας καλής σχεδίασης εξάτμισης και λόγω φρεναρίσματος των καυσαερίων από την ίδια την ύπαρξη της τουρμπίνας κλπ). ¶ρα για να βγάλεις τα παραπάνω άλογα καις και παραπάνω καύσιμο, δεν γίνεται αλλιώς. Πόσο παραπάνω?....ανάλογα με το βάρος του δεξιού ποδιού!

<img src='http://www.vwclub.gr/vwforum/public/style_emoticons/<#EMO_DIR#>/sillyhorse1rb5.gif' class='bbc_emoticon' alt=':sillyhorse1rb5:' /> <img src='http://www.vwclub.gr/vwforum/public/style_emoticons/<#EMO_DIR#>/new_sugkrotima.gif' class='bbc_emoticon' alt=':new_sugkrotima:' /> :rolleyes: <img src='http://www.vwclub.gr/vwforum/public/style_emoticons/<#EMO_DIR#>/rocket.gif' class='bbc_emoticon' alt=':rocket:' /> :yahoo: <img src='http://www.vwclub.gr/vwforum/public/style_emoticons/<#EMO_DIR#>/worthy.gif' class='bbc_emoticon' alt=':worthy:' /> :yahoo::rofl::good:

Πολύ χρήσιμες οι πληροφορίες σου. Το ίδιο ισχύει και για τον κομπρέσορα; Ρωτώ γιατί αναπόφευκτα δουλεύει μόλις ξεκινάει το αμάξι και εκείνη την στιγμή η θερμοκρασία είναι πολύ χαμηλή.

Link to comment
Share on other sites

Η τουρμπίνα που μπορεί να γυρίζει σε 100+ χιλιάδες στροφές το λεπτό για την αξιοπιστία της χρειάζεται λίπανση(λάδι) και ψύξη(λάδι ή νερό). Δολοφονικό θεωρείται το γκάζωμα του κινητήρα και σβήσιμο που αφήνει το turbo να γυρίζει γρήγορα χωρίς λάδι! Καλό είναι μετά από έντονη χρήση της τουρμπίνας να περνάει κάποιος χρόνος ώστε να μεταφερθεί η θερμότητα από το turbo. Διαφορετικά το λάδι που μένει στο turbo μπορεί να υπερθερμανθεί και να καεί και να αφήσει κατάλοιπα που ευνοούν τις τριβές και φθορές. Για το λόγο αυτό υπάρχουν και χρονοδιακόπτες που μπορούν να αφήνουν τη μηχανή να λειτουργεί για μερικά λεπτά ενώ ο οδηγός έχει ήδη βγεί και κλειδώσει το αυτοκίνητο!

Πολύ χρήσιμες οι πληροφορίες, μπράβο για το πολύ καλό ποστ!

Μια απορία.. σε περίπτωση που κάποιος δεν έχει turbo timer, πόση ώρα περίπου πρέπει να περιμένουμε να κρυώσει η τουρμπίνα; Για παράδειγμα για το polo 1.2 tsi. Πρέπει να περιμένουμε διαφορετικό χρόνο ανάλογα με την εποχή, το πόσο το πλακώσαμε στον δρόμο, το χρόνο διαδρομής(π.χ. ταξίδι) κλπ;

Link to comment
Share on other sites

5 λεπτά πριν να φθάσεις στον προορισμό σου κόψε ταχύτητα και μόλις φθάσεις 1 λεπτό είναι ότι πρέπει!!

Δεν κάνει καλό να μένει σταματημένο το αμάξι πολύ ώρα μιας και καταπονείται περισσότερο!!

Link to comment
Share on other sites

Πολύ χρήσιμες οι πληροφορίες, μπράβο για το πολύ καλό ποστ!

Μια απορία.. σε περίπτωση που κάποιος δεν έχει turbo timer, πόση ώρα περίπου πρέπει να περιμένουμε να κρυώσει η τουρμπίνα; Για παράδειγμα για το polo 1.2 tsi. Πρέπει να περιμένουμε διαφορετικό χρόνο ανάλογα με την εποχή, το πόσο το πλακώσαμε στον δρόμο, το χρόνο διαδρομής(π.χ. ταξίδι) κλπ;

Τα τελευταία 5 λεπτά κάθε διαδρομής καλό είναι να είναι ήπια.

Link to comment
Share on other sites

περι σκάστρες. Η σκαστρα εξισορροπει την πίεση στην εισαγωγη, και αυτο γινεται σε οσο το δυνατον λιγοτερο χρονο, ετσι ωστε να μην υπαρχει διαφορα πιεσης στην εισαφωγη. Οι σκαστρες με πιστονι , ακομη και αυτες εχουν διαφραγμα

Link to comment
Share on other sites

 -0,6 με -0,7Bar +-

Edited by nikdev
Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.



×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.